Sunday, November 5, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health

Dendritic fibrous nanosilica (DFNS), also known as KCC-1, has a unique fibrous morphology and a high surface area with improved accessibility to the internal surface, tunable pore size and volume, controllable particle size, which made it useful in the fields of energy, environment, and health.
CREDIT
Ayan Maity, Vivek Polshettiwar 


 Dendritic fibrous nanosilica (DFNS) attracted a great deal of attention in a large number of scientific disciplines such as catalysis, solar energy harvesting (photocatalysis, solar cells, etc.), energy storage,  self-cleaning antireflective coatings, surface plasmon resonance (SPR)-based ultra-sensitive sensors, CO2 capture, and biomedical applications (drug delivery, protein and gene delivery, bioimaging, photothermal ablation, Ayurvedic and radiotherapeutics drug delivery,
etc.). As discussed in this review, the unique fibrous morphology of the  DFNS family of materials bestows them with several important properties that were brilliantly exploited for use in a range of applications. The fibers of DFNS were functionalized with a range of organic groups, ionic liquids, organometallic complexes, polymers, peptides, enzymes, DNA, genes, etc. 

They were also loaded with metal nanoparticles, bi-metallic nanoparticles, even with single atoms of metals, quantum dots, and metal oxides and hydroxides. They were also used as hard templates for the synthesis of high surface area carbon with fibrous morphology. DFNS-based zeolites were also synthesized with unique
activities.

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health

Monday, October 24, 2016

Research could lead to new type of treatment for pancreatic cancer based on gold nanoparticles

A diagnosis of pancreatic cancer is often a death sentence because chemotherapy and radiation have little impact on the disease. In the U.S. this year, some 53,000 new cases will be diagnosed, and 42,000 patients will die of the disease, according to the National Institutes of Health. But research now being reported in ACS Nano could eventually lead to a new type of treatment based on gold nanoparticles.

Scientists have previously studied these tiny gold particles as a vehicle to carry chemotherapy drug molecules intotumors or as a target to enhance the impact of radiation on tumors. In addition, Priyabrata Mukherjee and colleagues previously found that gold nanoparticles themselves could limit tumor growth and metastasis in a model of ovarian cancer in mice.

Now, the team has determined that the same holds true for mouse models of pancreatic cancer. But interestingly, the new work revealed details about cellular communication in the area surrounding pancreatic tumors. By interrupting this communication -- which is partly responsible for this cancer's lethal nature -- the particles reduced the cell proliferation and migration that ordinarily occurs near these tumors. Gold nanoparticles of the size used in the new study are not toxic to normal cells, the researchers note.

Monday, August 8, 2016

New carbon nanomaterial pot several times deeper than any similar nanostructure

A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced. This unique characteristic enables the material to gradually release substances contained within and is expected to be beneficial in applications such as drug delivery systems.

Carbon is an element that is light, abundant, has a strong binding force, and eco-friendly. The range of carbon-based materials is expected to become more widespread in the eco-friendly society of the future. Recently, nanosized (one-billionth of a meter) carbon materials have been developed with lengths, widths, or heights below 100 nm. These materials take extreme forms such as tiny grained substances, thin sheet-like substances, and slim fibrous substances. Example of these new materials are fullerenes, which are hollow cage-like carbon molecules; carbon nanotubes, cylindrical nanostructures of carbon molecules; and graphene, one-atom thick sheets of carbon molecules.

Why are these tiny substances needed? One reason is that reactions with other materials can be much larger if a substance has an increased surface area. When using nanomaterials in place of existing materials, it is possible to significantly change surface area without changing weight and volume, thereby improving both size and performance. The development of carbon nanomaterials has provided novel nanostructured materials with shapes and characteristics that surpass existing materials.

Now, research from the laboratory of Kumamoto University's Associate Prof. Yokoi has resulted in the successful development of a container-type carbon nanomaterial with a much deeper orifice than that found in similar materials. To create the new material, researchers used their own, newly developed method of material synthesis. The container-shaped nanomaterial has a complex form consisting of varied layers of stacked graphene at the bottom, the body, and the neck areas of the container, and the graphene edges along the outer surface of the body were found to be very dense. Due to these innovate features, Associate Prof. Yokoi and colleagues named the material the "carbon nanopot."

Tuesday, July 19, 2016

New research delves into physical properties of nanoparticles for successful drug delivery

Nanoparticles are being studied as drug delivery systems to treat a wide variety of diseases. New research delves into the physical properties of nanoparticles that are important for successfully delivering therapeutics within the body, with a primary focus on size. This is especially important as relatively subtle differences in size can affect cell uptake and determine the fate of nanoparticles once within cells.
By exploring various strategies for fabricating nanoparticles, the investigators provide valuable information for generating uniform nanoparticles in high yields that will be efficiently taken up by target cells.

Monday, April 18, 2016

Scientists develop graphene-based sensor that can detect harmful air pollution in home

Scientists develop graphene-based sensor that can detect harmful air pollution in home: Scientists from the University of Southampton, in partnership with the Japan Advanced Institute of Science and Technology, have developed a graphene-based sensor and switch that can detect harmful air pollution in the home with very low power consumption.

Monday, April 11, 2016

Novel nanoparticle drug delivery system for enhanced tumor penetration of cancer drugs

Novel nanoparticle drug delivery system for enhanced tumor penetration of cancer drugs: For more than a decade, biomedical researchers have been looking for better ways to deliver cancer-killing medication directly to tumors in the body. Tiny capsules, called nanoparticles, are now being used to transport chemotherapy medicine through the bloodstream, to the doorstep of cancerous tumors.

Saturday, April 11, 2015

Plaque-busting nanoparticles could help fight tooth decay

Nanoparticles carry the antibacterial drug farnesol to the surface of the teeth, where they release their payload when triggered by acidic environments.

Nanotechnology might soon save you a trip to the dentist. Researchers have developed tiny sphere-shaped particles that ferry a payload of bacteria-slaying drugs to the surface of the teeth, where they fight plaque and tooth decay on the spot. The approach could also be adapted to combat other plaquelike substances, known as biofilms, such as those that form on medical devices like orthopedic implants.
"It's quite clever," says oral microbiologist Robert Allaker of Queen Mary University of London, who was not involved with the research. "I think it was an innovative piece of work."
Plaque is a film made up of bacteria and a matrix of polymers composed of linked sugars, which clings tenaciously to teeth. When bacteria digest sugars in the mouth, they produce acid as a byproduct, which eats away at teeth, eventually causing decay. Topical antibacterial drugs don’t work well on plaque because saliva quickly washes them away.

Nanoparticles can solve this problem by clinging to the surface of teeth and carrying drugs along with them. Although this is not the first technique to employ such a strategy, the research improves upon previous methods, because these particles attach not only to the tooth, but also to the plaque biofilm.